# Fraction calculator

The calculator performs basic and advanced operations with fractions, expressions with fractions combined with integers, decimals, and mixed numbers. It also shows detailed step-by-step information about the fraction calculation procedure. Solve problems with two, three, or more fractions and numbers in one expression.

## Result:

### 8 5/8 + 5 3/4 = 115/8 = 14 3/8 = 14.375

Spelled result in words is one hundred fifteen eighths (or fourteen and three eighths).### How do you solve fractions step by step?

- Conversion a mixed number 8 5/8 to a improper fraction: 8 5/8 = 8 5/8 = 8 · 8 + 5/8 = 64 + 5/8 = 69/8

To find a new numerator:

a) Multiply the whole number 8 by the denominator 8. Whole number 8 equally 8 * 8/8 = 64/8

b) Add the answer from previous step 64 to the numerator 5. New numerator is 64 + 5 = 69

c) Write a previous answer (new numerator 69) over the denominator 8.

Eight and five eighths is sixty-nine eighths - Conversion a mixed number 5 3/4 to a improper fraction: 5 3/4 = 5 3/4 = 5 · 4 + 3/4 = 20 + 3/4 = 23/4

To find a new numerator:

a) Multiply the whole number 5 by the denominator 4. Whole number 5 equally 5 * 4/4 = 20/4

b) Add the answer from previous step 20 to the numerator 3. New numerator is 20 + 3 = 23

c) Write a previous answer (new numerator 23) over the denominator 4.

Five and three quarters is twenty-three quarters - Add: 69/8 + 23/4 = 69/8 + 23 · 2/4 · 2 = 69/8 + 46/8 = 69 + 46/8 = 115/8

For adding, subtracting, and comparing fractions, it is suitable to adjust both fractions to a common (equal, identical) denominator. The common denominator you can calculate as the least common multiple of both denominators - LCM(8, 4) = 8. In practice, it is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 8 × 4 = 32. In the following intermediate step, the fraction result cannot be further simplified by canceling.

In other words - sixty-nine eighths plus twenty-three quarters = one hundred fifteen eighths.

#### Rules for expressions with fractions:

**Fractions**- use the slash “/” between the numerator and denominator, i.e., for five-hundredths, enter

**5/100**. If you are using mixed numbers, be sure to leave a single space between the whole and fraction part.

The slash separates the numerator (number above a fraction line) and denominator (number below).

**Mixed numerals**(mixed fractions or mixed numbers) write as non-zero integer separated by one space and fraction i.e.,

**1 2/3**(having the same sign). An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both signs for fraction line and division, we recommended use colon (:) as the operator of division fractions i.e.,

**1/2 : 3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

The colon

**:**and slash

**/**is the symbol of division. Can be used to divide mixed numbers

**1 2/3 : 4 3/8**or can be used for write complex fractions i.e.

**1/2 : 1/3**.

An asterisk

*****or

**×**is the symbol for multiplication.

Plus

**+**is addition, minus sign

**-**is subtraction and

**()[]**is mathematical parentheses.

The exponentiation/power symbol is

**^**- for example:

**(7/8-4/5)^2**= (7/8-4/5)

^{2}

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• exponentiation of fraction: 3/5^3

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction: 4/22

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

Be careful, always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) has the same priority and then must evaluate from left to right.

## Fractions in word problems:

- Series and sequences

Find a fraction equivalent to the recurring decimal? 0.435643564356 - Algebra problem

This is algebra. Let n represent an unknown number. 1. Eight more than the number n 2. Three times the number n 3. The product of the number n and eight 4. Three less than the number n 5. Three decreased by the number n - Expressions

Let k represent an unknown number, express the following expressions: 1. The sum of the number n and two 2. The quotient of the numbers n and nine 3. Twice the number n 4. The difference between nine and the number n 5. Nine less than the number n - Cupcakes

In a bowl was some cupcakes. Janka ate one third and Danka ate one quarter of cupcakes. a) How many of cookies ate together? b) How many cookies remain in a bowl? Write the results as a decimal number and in notepad also as a fraction. - Fe metal sheet

For one product, 5/8 of the metal sheet are consumed, to the second 5/6 of remains. What part of the sheet metal is consumed for both products together? - Decimal to fraction

Write decimal number 8.638333333 as a fraction A/B in the basic form. Given decimal has infinite repeating figures. - Savings

Eva borrowed 1/3 of her savings to her brother, 1/2 of savings spent in the store and 7 euros left. How much did she save? - Food weight

Stacie is a resident at the medical facility where you work. You are asked to chart the amount of solid food that she consumes. For the noon meal, today she ate 1/2 of a 3-ounce serving of meatloaf, 3/4 of her 3-ounce serving of mashed potatoes, and 1/3 o - Add two fractions

What is the sum of 2/3 and 3/10? - Adding mixed fractions

Add this two mixed numbers: 1 5/6 + 2 2/11= - Chocolate buyer

Peter bought 1/2 a pound of chocolate at rocky mountain chocolate factory. Later he went to the sweet shoppie and he bought 6/9 of a pound more chocolate. How much chocolate did he buy that day? - Jo walks

Jo walks 3/4 of km to a friends home, 1/2 km to mall, and 2/3 km home. What total distance that joy covers? - Sum of 18

Sum of two fractions is 4 3/7. If one of the fractions is 2 1/5 find the other one .

next math problems »